Tag Archives: artificial intelligence

Using Artificial Intelligence to Predict Life-Threatening Bacterial Disease in Dogs

Leptospirosis, a disease that dogs can get from drinking water contaminated with Leptospira bacteria, can cause kidney failure, liver disease and severe bleeding into the lungs. Early detection of the disease is crucial and may mean the difference between life and death.

Veterinarians and researchers at the University of California, Davis, School of Veterinary Medicine have discovered a technique to predict leptospirosis in dogs through the use of artificial intelligence. After many months of testing various models, the team has developed one that outperformed traditional testing methods and provided accurate early detection of the disease. The groundbreaking discovery was published in Journal of Veterinary Diagnostic Investigation.

“Traditional testing for Leptospira lacks sensitivity early in the disease process,” said lead author Krystle Reagan, a board-certified internal medicine specialist and assistant professor focusing on infectious diseases. “Detection also can take more than two weeks because of the need to demonstrate a rise in the level of antibodies in a blood sample. Our AI model eliminates those two roadblocks to a swift and accurate diagnosis.”

The research involved historical data of patients at the UC Davis Veterinary Medical Teaching Hospital that had been tested for leptospirosis. Routinely collected blood work from these 413 dogs was used to train an AI prediction model. Over the next year, the hospital treated an additional 53 dogs with suspected leptospirosis. The model correctly identified all nine dogs that were positive for leptospirosis (100% sensitivity). The model also correctly identified approximately 90% of the 44 dogs that were ultimately leptospirosis negative.

The goal for the model is for it to become an online resource for veterinarians to enter patient data and receive a timely prediction.

“AI-based, clinical decision making is going to be the future for many aspects of veterinary medicine,” said School of Veterinary Medicine Dean Mark Stetter. “I am thrilled to see UC Davis veterinarians and scientists leading that charge. We are committed to putting resources behind AI ventures and look forward to partnering with researchers, philanthropists, and industry to advance this science.”  

Detection model may help people

Leptospirosis is a life-threatening zoonotic disease, meaning it can transfer from animals to humans. As the disease is also difficult to diagnose in people, Reagan hopes the technology behind this groundbreaking detection model has translational ability into human medicine.

“My hope is this technology will be able to recognize cases of leptospirosis in near real time, giving clinicians and owners important information about the disease process and prognosis,” said Reagan. “As we move forward, we hope to apply AI methods to improve our ability to quickly diagnose other types of infections.”

Reagan is a founding member of the school’s Artificial Intelligence in Veterinary Medicine Interest Group comprising veterinarians promoting the use of AI in the profession. This research was done in collaboration with members of UC Davis’ Center for Data Science and Artificial Intelligence Research, led by professor of mathematics Thomas Strohmer. He and his students were involved in the algorithm building. The center strives to bring together world-renowned experts from many fields of study with top data science and AI researchers to advance data science foundations, methods, and applications.

Reagan’s group is actively pursuing AI for prediction of outcome for other types of infections, including a prediction model for antimicrobial resistant infections, which is a growing problem in veterinary and human medicine. Previously, the group developed an AI algorithm to predict Addison’s disease with an accuracy rate greater than 99%.

Other authors include Shaofeng Deng, Junda Sheng, Jamie Sebastian, Zhe Wang, Sara N. Huebner, Louise A. Wenke, Sarah R. Michalak and Jane E. Sykes. Funding support comes from the National Science Foundation.

Source: UC Davis

AI could help diagnose dogs suffering from chronic pain

A new artificial intelligence (AI) technique developed by the University of Surrey could eventually help veterinarians quickly identify Cavalier King Charles Spaniel (CKCS) dogs with a chronic disease that causes crippling pain. The same technique identified unique biomarkers which inspired further research into the facial changes in dogs affected by Chiari-like malformation (CM).

CKCS

Photo by Getty Images

Cavalier King Charles Spaniels are predisposed to CM – a disease which causes deformity of the skull, the neck (cranial cervical vertebrae) and, in some extreme cases, lead to spinal cord damage called syringomyelia (SM). While SM is straightforward to diagnose, pain associated with CM is challenging to confirm and why this research is innovative.

In a paper published by the Journal of Veterinary Internal Medicine, researchers from Surrey’s Centre for Vision, Speech and Signal Processing (CVSSP) and School of Veterinary Medicine (SVM) detail how they used a completely automated, image mapping method to discover patterns in MRI data that could help vets identify dogs that suffer from CM associated pain. The research helped identify features that characterise the differences in the MRI images of dogs with clinical signs of pain associated with CM and those with syringomyelia from healthy dogs. The AI identified the floor of the third ventricle and its close neural tissue, and the region in the sphenoid bone as biomarkers for pain associated with CM and the presphenoid bone and the region between the soft palate and the tongue for SM.

Dr Michaela Spiteri, lead author of the study from CVSSP, said: “The success of our technique suggests machine learning can be developed as a diagnostic tool to help treat Cavalier King Charles Spaniel’s that are suffering from this enigmatic and terrible disease. We believe that AI can be a useful tool for veterinarians caring for our four-legged family members.”

Identification of these biomarkers inspired a further study, also published in the Journal of Veterinary Internal Medicine, which found that dogs with pain associated with CM had more brachycephalic features (having a relatively broad, short skull) with reduction of nasal tissue and a well-defined stop.

SVM student, Eleonore Dumas, whose 3rd year project formed part of the study data, said: “Being able to contribute to the development of diagnostic tools that allow for earlier diagnosis of patients suffering from this painful condition has been both challenging and incredibly rewarding.”

Dr Penny Knowler, lead author of the study from SVM, said: “This study suggests that the whole skull, rather than just the hindbrain, should be analysed in diagnostic tests. It also impacts on how we should interpret MRI from affected dogs and the choices we make when we breed predisposed dogs and develop breeding recommendations.”

Adrian Hilton, Distinguished Professor from the University of Surrey and Director of CVSSP, said: “This project demonstrates the potential for AI using machine learning to provide new diagnostic tools for animal health. Collaboration between experts in CVSSP and Surrey’s School of Veterinary Medicine is pioneering new approaches to improve animal health and welfare.”

Both studies were funded by the Memory of Hannah Hasty Research Fund. Hannah was a CKCS unaffected by CM/ SM and a much beloved companion, giving her owner much support and joy. The AI study was also supported by the Pet Plan Charitable Trust.

The findings of the studies are available to read on the Journal of Veterinary Internal Medicine website here and here.