Tag Archives: coat color

Genetic enigma solved: Inheritance of coat color patterns in dogs

An international team of researchers including scientists from the Institute of Genetics of the University of Bern has unraveled the enigma of inheritance of coat color patterns in dogs. The researchers discovered that a genetic variant responsible for a very light coat in dogs and wolves originated more than two million years ago in a now extinct relative of the modern wolf.

Wolf (stock image).
Credit: © Matthieu / stock.adobe.com

The inheritance of several coat color patterns in dogs has been controversially debated for decades. Researchers including Tosso Leeb from the Institute of Genetics of the University of Bern have now finally been able to solve the puzzle. Not only did they clarify how the coat color patterns are genetically controlled, but the researchers also discovered that the light coat color in white arctic wolves and many modern dogs is due to a genetic variant originating in a species that went extinct a long time ago. The study has just been published in the scientific journal Nature Ecology and Evolution.

Two pigments and a “switch” for all coat colors

Wolves and dogs can make two different types of pigment, the black one, called eumelanin and the yellow, pheomelanin. A precisely regulated production of these two pigments at the right time and at the right place on the body gives rise to very different coat color patterns. Prior to the study, four different patterns had been recognized in dogs and several genetic variants had been theorized which cause these patterns. However, commercial genetic testing of these variants in many thousands of dogs yielded conflicting results, indicating that the existing knowledge on the inheritance of coat color patterns was incomplete and not entirely correct.

During the formation of coat color, the so-called agouti signaling protein represents the body’s main switch for the production of yellow pheomelanin. If the agouti signaling protein is present, the pigment producing cells will synthesize yellow pheomelanin. If no agouti signaling protein is present, black eumelanin will be formed. “We realized early on that the causative genetic variants have to be regulatory variants which modulate the rate of protein production and lead to higher or lower amounts of agouti signal protein”, Tosso Leeb explains.

Five instead of four distinct coat color patterns

The gene for agouti signaling protein has several initiation sites for reading the genetic information, which are called promoters. Dogs, on the one hand, have a ventral promoter, which is responsible for the production of agouti signaling protein at the belly. On the other hand, dogs have an additional hair cycle-specific promoter that mediates the production of agouti signaling protein during specific stages of hair growth and enables the formation of banded hair.

For the first time, the researchers characterized these two promoters in detail, in hundreds of dogs. They discovered two variants of the ventral promoter. One of the variants conveys the production of normal amounts of agouti signaling protein. The other variant has higher activity and causes the production of an increased amount of agouti signaling protein. The researchers even identified three different variants of the hair cycle-specific promoter. Starting with these variants at the individual promoters, the researchers identified a total of five different combinations, which cause different coat color patterns in dogs. “The textbooks have to be rewritten as there are five instead of the previously accepted four different patterns in dogs”, Leeb says.

Unexpected insights on the evolution of wolves

As many genomes from wolves of different regions on earth have become publicly available, the researchers further investigated whether the identified genetic variants also exist in wolves. These analyses demonstrated that the variants for overactive ventral and hair cycle-specific promoters were already present in wolves prior to the domestication of modern dogs, which started approximately 40,000 years ago. Most likely, these genetic variants facilitated adaptation of wolves with a lighter coat color to snow-rich environments during past ice ages. Today, the completely white arctic wolves and the light colored wolves in the Himalaya still carry these genetic variants.

Further comparisons of the gene sequences with other species of the canidae family yielded very surprising results. The researchers were able to show that the overactive variant of the hair cycle-specific promoter in light-colored dogs and wolves shared more similarities with very distantly related species such as the golden jackal or the coyote than with the European grey wolf.

“The only plausible explanation for this unexpected finding is an ancient origin of this variant, more than two million years ago, in a now extinct relative of wolves”, Leeb says. The gene segment must have been introgressed more than two million years ago into wolves by hybridization events with this now extinct relative of wolves. Thus, a small piece of DNA from this extinct species is still found today in yellow dogs and white arctic wolves. “This is reminiscent of the spectacular finding that modern humans carry a small proportion of DNA in their genomes from the now extinct Neandertals”, Leeb adds.

Source: University of Bern

Your dog might be hiding its true colors

If you have a purebred dog, it’s likely that he or she looks fairly similar to other dogs of the same breed, especially when it comes to the color of their coats.

But what happens if a purebred puppy doesn’t look exactly like its siblings when it’s born? Chances are, it might not be a flaw – but rather a hidden gene variant that decided to show itself.

New research from Purdue University’s College of Veterinary Medicine shows that some breeds of dogs have hidden coat colors – and in some cases, other traits – that have been lurking all along.

Purdue university research into coat color

New research from Purdue University’s College of Veterinary Medicine shows that some breeds of dogs have hidden coat colors – and in some cases, other traits – that have been lurking all along. Example: There are around 18 recognized breeds of dogs that have the genetic potential to be born without a tail – such as the popular Australian Shepherd (shown in photo). But the data shows that up to 48 of the breeds analyzed possess the tailless gene variant, usually at a very low frequency.

Led by Kari Ekenstedt, DVM, Ph.D., assistant professor of anatomy and genetics, and Dayna Dreger, Ph.D., the lead scientist in Ekenstedt’s canine genetics research laboratory, the team looked at a dozen different genes in 212 dog breeds. Purdue researchers, together with industry partners at Wisdom Health, analyzed data that had been initially collected by WISDOM PANEL™ for the development of canine DNA tests. The work was published Oct. 28 in PLOS ONE.

“These are purebred dogs with traits that their breed clubs say they’re not supposed to have,” said Ekenstedt, whose research program focuses on canine genetics. “The message of this paper is, ‘Hey, these gene variants exist in your breed, and if a few dogs are born with these traits, it’s not caused by accidental breeding and it’s not a mutt; it’s a purebred showing this known genetic potential.’”

Along with analyzing the data, researchers used standard breed descriptions from major American and international dog breed registries to determine coat colors and tail lengths that were accepted within each breed.

“There was a lot of information we didn’t expect,” Dreger said. “When it comes to different dog breeds, their standards are mostly based on preference and aesthetics. We make assumptions for certain breeds based on what we expect their coat colors to be.”

Ekenstedt says coat color genes have a significant amount of epistasis between them, meaning that what happens at one gene can mask what’s happening at another gene. Because of epistasis, it’s rare to see those masked genes actually expressed in a dog’s coat color.

One example of a “fault” allele – a gene variant that would cause a trait that is not allowed in a breed standard – is an allele that causes the brown color, which affects both hair pigment and skin pigment. The color is allowed in breeds like the Labrador Retriever where it causes the chocolate color. However, researchers observed that in breeds where brown is not allowed, such as the Rottweiler and the German Shepherd Dog, brown alleles exist at low frequencies.

Another example of a fault allele is in the Weimaraner, which exists in both longhaired and shorthaired varieties. At least one dog breed organization does not allow longhaired Weimaraners while several others do allow them.  Of the Weimaraners sampled in this data, the longhaired allele is present at a 4% frequency.

The same goes for other traits, too, Dreger said. For example, there are around 18 recognized breeds of dogs that have the genetic potential to be born without a tail – such as the popular Australian Shepherd. But the data shows that up to 48 of the breeds analyzed possess the tailless gene variant, usually at a very low frequency; one of those breeds is the Dachshund.

“A breeder would certainly be surprised to see a Dachshund born without a tail,” Dreger said. “The chances are low, but our research shows that the potential is there.”

Both Dreger and Ekenstedt hope the research prompts some discussions within the dog community.

“I want this to start science-based conversations,” Dreger said. “We’re not here to make decisions on what a breed should or shouldn’t look like or what a breed club should do. We’re here to say these are the facts, and these are the gene variants that naturally exist in these breeds.”

They also hope it changes some perspectives when it comes to what is to be expected with certain breeds of dogs.

“There’s an assumption that the standards for these different breeds of dogs are set in stone,” Dreger said. “People will often make assumptions that if it doesn’t match this, it’s not purebred. This data shows that there is a lot of variation in some of these breeds, and the standards are not as concrete as we expect them to be.”

Wisdom Health funded a Veterinary Summer Scholar position to Blair Hooser, a student at the Purdue College of Veterinary Medicine and coauthor on the paper, for this work. Partial support for Dr. Ekenstedt was provided by the National Institutes of Health.

Source:  Purdue University media release