Tag Archives: faeces

Canine faeces reveal more about 17th century working sled dogs

Editor’s Note (tongue in cheek): Talk about a shitty job…


Proteins from frozen canine faeces have been successfully extracted for the first time to reveal more about the diets of Arctic sled dogs.

Anne Kathrine Wiborg Runge sampling in the laboratory Credit: Katharina Dulias

Researchers – led by the University of York –  say the breakthrough will enable scientists to use palaeofaeces (ancient faeces), to reveal more about our ancestors and their animals.

The recovered proteins revealed that sled dogs at the Nunalleq archaeological site, near Quinhagak, Alaska consumed muscle, bone and intestines from a range of salmon species including chum salmon, often called,  “dog salmon.”

Proteins deriving from the dogs that deposited the samples were also detected. The majority of these were associated with the digestive system and confirmed that the samples passed through the gastrointestinal tract. However, a bone fragment found in one of the samples was identified as being from a canid, suggesting that the dogs also ate other dogs, which is supported by previous observations of gnaw marks on discarded bones.

Dietary habits

Lead researcher, PhD student Anne Kathrine Wiborg Runge from the Department of Archaeology said that the study demonstrated the viability of frozen palaeofaeces as a unique source of information.

She said: “The lives of dogs and their interactions with humans have only recently become a subject of interest to archaeologists. This study of their dietary habits reveals more about their relationship with humans.  

“In the Arctic, dogs rely exclusively on humans for food during the winter but deciphering the details of provisioning strategies has been challenging.

 “In places like the Arctic the permafrost has preserved palaeofaeces. Now they can be used as a unique source of information by which we can learn more about the past.”

Past arctic cultures

The researchers used palaeoproteomics, a technique based on tandem mass spectrometry (LC-MS/MS) to recover proteins from the faecal samples. Unlike more established or  traditional analyses, proteomics can provide insight into which tissues the proteins originated from and makes it possible to identify which parts of animals were consumed.

Complementary analyses were performed with Zooarchaeology by Mass Spectrometry (ZooMS), an analytical approach pioneered at the University of York, on bone fragments recovered from within the palaeofaeces. This technique uses the collagen protein preserved in archaeological and historic artefacts to identify the species from which it derives.

“Arctic dogs rely exclusively on humans for food during the long winters, but may have been fed differently or less frequently in summer, or been let loose to fend  for themselves. Working sled dogs are a particularly expensive resource, requiring up to 3.2 kg of fish or meat every day and provisioning of dogs would therefore have played a significant role in the food procurement strategies of past arctic cultures,” added Anne Kathrine Wiborg Runge.

The University of Copenhagen, the University of Aberdeen, the University of British Columbia and the Qanirtuuq Incorporated village corporation were also part of the research project which was funded by EU Horizon 2020, Danish National Research Foundation, and the UK Arts and Humanities Research Council.

Source: University of York

Dog waste and waterway contamination

Credit: Ryan McVay/Photodisc/Thinkstock

Credit: Ryan McVay/Photodisc/Thinkstock

Americans love their dogs, but they don’t always love to pick up after them. And that’s a problem. Dog feces left on the ground wash into waterways, sometimes carrying bacteria — including antibiotic-resistant strains — that can make people sick. Now scientists have developed a new genetic test to figure out how much dogs are contributing to this health concern, according to a report in the ACS journal Environmental Science & Technology.

Orin C. Shanks, Hyatt C. Green and colleagues explain that our waterways are susceptible to many sources of fecal contamination, including sewage leaks and droppings from farm animals and wildlife. Contamination from dog feces is a concern because it can harbor antibiotic-resistant strains of E. coli and other bacteria and parasites that can infect humans — and there are nearly 70 million domesticated dogs in the U.S. Scientists have had few tools to determine the extent to which waste from dogs is adding to the pathogens in rivers, lakes and beachfront surf. Current methods look for certain genes from gut bacteria that end up in dog feces. However, this is not foolproof — the microbiota of humans and the canine pets they live with often overlap, making the analysis complicated. So Shanks’ team set out to create a more specific test.

The researchers developed a new genetic testing method to specifically detect canine fecal contamination in water. They identified 11 genetic markers that were common among most of the dog samples but missing from the human ones. To determine whether their method would work for real-world monitoring, they sampled storm water from a rain garden where people often walk their dogs. The technique successfully detected some of the same markers they had identified as evidence for canine waste.

Source:  ACS news service

Sometimes, kisses are not allowed

When this happens at our house, I say ‘There will be no kisses for the rest of the day!’

Poop cicles

UK research supports worming and cleaning up after your dog

Researchers at the University of Bristol’s School of Veterinary Sciences have published their research, which supports the need for ongoing worming of dogs and the need for owners to clean up their dog’s poo.

At issue is the parasitic worm, Toxocara, which are a rare cause of disease in humans, responsible for occasional cases of abdominal pain, loss of sight, and potentially asthma and epilepsy.

Using data from the University, the researchers estimated relative contributions of dogs and the other hosts of the parasites, cats and foxes.   With the help of additional information from a previous study, the researchers estimated that nearly four tonnes of dog waste are produced in Bristol each day and nearly 1,000 tonnes throughout the UK.

Given that each adult female worm can lay 12,500 eggs or more per day, this equates to around 3.7 billion eggs shed per day within the city of Bristol.

“These results are not all that surprising but they are likely to differ widely between places. We provided a method for estimating different sources of contamination with Toxocara eggs anywhere in the world.  This will hopefully help locally appropriate control measures to be put in place. The data also provides a baseline against which future changes can be measured, as we currently lack any good evidence of how effective steps such as anti-fouling legislation are in reducing egg load and human disease” says Dr Eric Morgan the lead author of the paper.

The research team’s findings have been published in the journal Veterinary Parasitology.

Source:  University of Bristol media statement