Tag Archives: detection dogs

With impressive accuracy, dogs can sniff out coronavirus

Many long for a return to a post-pandemic “normal,” which, for some, may entail concerts, travel, and large gatherings. But how to keep safe amid these potential public health risks?

One possibility, according to a new study, is dogs. A proof-of-concept investigation published in the journal PLOS ONE suggests that specially trained detection dogs can sniff out COVID-19-positive samples with 96% accuracy.

“This is not a simple thing we’re asking the dogs to do,” says Cynthia Otto, senior author on the work and director of the University of Pennsylvania School of Veterinary Medicine Working Dog Center. “Dogs have to be specific about detecting the odor of the infection, but they also have to generalize across the background odors of different people: men and women, adults and children, people of different ethnicities and geographies.”

In this initial study, researchers found the dogs could do that, but training must proceed with great care and, ideally, with many samples. The findings are feeding into another investigation that Otto and colleagues have dubbed “the T-shirt study,” in which dogs are being trained to discriminate between the odors of COVID-positive, -negative, and -vaccinated individuals based on the volatile organic compounds they leave on a T-shirt worn overnight.

“We are collecting many more samples in that study—hundreds or more—than we did in this first one, and are hopeful that will get the dogs closer to what they might encounter in a community setting,” Otto says.

Through the Working Dog Center, she and colleagues have had years of experience training medical-detection dogs, including those that can identify ovarian cancer. When the pandemic arrived, they leveraged that expertise to design a coronavirus detection study.

Collaborators Ian Frank from the Perelman School of Medicine and Audrey Odom John from the Children’s Hospital of Philadelphia provided SARS-CoV-2-positive samples from adult and pediatric patients, as well as samples from patients who had tested negative to serve as experimental controls. Otto worked closely with coronavirus expert Susan Weiss of Penn Medicine to process some of the samples in Penn’s Biosafety Level 2+ laboratory to inactivate the virus so they would be safe for the dogs to sniff.

Because of workplace shutdowns due to the pandemic, instead of working with dogs at Penn Vet, the researchers partnered with Pat Nolan, a trainer with a facility in Maryland.

Eight Labrador retrievers and a Belgian Malinois that had not done medical-detection work before were used in the study. First the researchers trained them to recognize a distinctive scent, a synthetic substance known as universal detection compound (UDC). They used a “scent wheel” in which each of 12 ports is loaded with a different sample and rewarded the dog when it responded to the port containing UDC.

When the dogs consistently responded to the UDC scent, the team began training them to respond to urine samples from SARS-CoV-2 positive patients and discern positive from negative samples. The negative samples were subjected to the same inactivation treatment—either heat inactivation or detergent inactivation—as the positive samples.

Processing the results with assistance from Penn criminologist and statistician Richard Berk, the team found that after three weeks of training all nine dogs were able to readily identify SARS-CoV-2 positive samples, with 96% accuracy on average. Their sensitivity, or ability to avoid false negatives, however, was lower, in part, the researchers believe, because of the stringent criteria of the study: If the dogs walked by a port containing a positive sample even once without responding, that was labeled a “miss.”

The researchers ran into many complicating factors in their study, such as the tendency of the dogs to discriminate between the actual patients, rather than between their SARS-CoV-2 infection status. The dogs were also thrown off by a sample from a patient that tested negative for SARS-CoV-2 but who had recently recovered from COVID-19.

“The dogs kept responding to that sample, and we kept telling them no,” Otto says. “But obviously there was still something in the patient’s sample that the dogs were keying in on.”

Major lessons learned from the study, besides confirming that there is a SARS-CoV-2 odor that dogs can detect, were that future training should entail large numbers of diverse samples and that dogs should not be trained repeatedly on the samples from any single individual.

“That’s something we can carry forward not only in our COVID training but in our cancer work and any other medical detection efforts we do,” says Otto. “We want to make sure that we have all the steps in place to ensure quality, reproducibility, validity, and safety for when we operationalize our dogs and have them start screening in community settings.”

Cynthia M. Otto is a professor of working dog sciences & sports medicine and director of the Working Dog Center in the University of Pennsylvania School of Veterinary Medicine.

Source: Penn Today

Sniffing in the name of science

The lists of Earth’s endangered animals and plants are getting increasingly longer. But in order to stop this trend, we require more information. It is often difficult to find out exactly where the individual species can be found and how their populations are developing. According to a new overview study published in Methods in Ecology and Evolution by Dr Annegret Grimm-Seyfarth from the Helmholtz Centre for Environmental Research (UFZ) and her colleagues, specially trained detection dogs can be indispensable in such cases. With the help of these dogs, the species sought can usually be found faster and more effectively than with other methods.

How many otters are there still in Germany? What habitats do threatened crested newts use on land? And do urban hedgehogs have to deal with different problems than their rural conspecifics? Anyone wishing to effectively protect a species should be able to answer such questions. But this is by no means easy. Many animals remain in hiding – even their droppings can be difficult to find. Thus, it is often difficult to know exactly whether and at what rate their stocks are shrinking or where the remaining survivors are. “We urgently need to know more about these species”, says Dr Annegret Grimm-Seyfarth of the UFZ. “But first we must find them”.

Annegret Grimm-Seyfarth with specially trained detection dog “Zammy”, a Border Collie.

Remote sensing with aerial and satellite images is useful for mapping open landscapes or detecting larger animals. But when it comes to densely overgrown areas and smaller, hidden species, experts often carry out the search themselves or work with cameras, hair traps, and similar tricks. Other techniques (e.g. analysing trace amounts of DNA) have also been attracting increasing interest worldwide. The use of specially trained detection dogs can also be particularly useful. After all, a dog’s sense of smell is virtually predestined to find the smallest traces of the target species. While humans have about six million olfactory receptors, a herding dog has more than 200 million – and a beagle even 300 million. This means that dogs can perceive an extremely wide range of odours, often in the tiniest concentrations. For example, they can easily find animal droppings in a forest or plants, mushrooms, and animals underground. 

At the UFZ, the detection dogs have already proven their abilities in several research projects. “In order to be able to better assess their potential, we wanted to know how detection dogs have previously been used around the world”, says Grimm-Seyfarth. Together with UFZ employee Wiebke Harms and Dr Anne Berger from the Leibniz Institute for Zoo and Wildlife Research (IZW) in Berlin, she has evaluated 1220 publications documenting the use of such search dogs in more than 60 countries. “We were particularly interested in which breeds of dogs were used, which species they were supposed to track down, and how well they performed”, explains the researcher.

The longest experience with the detection dogs is in New Zealand, where dogs have been tracking threatened birds since around 1890. Since then, the idea has been implemented in many other regions, especially in North America and Europe. The studies analysed focused mainly on finding animals as well as their habitats and tracks. Dogs have been used to find more than 400 different animal species – most commonly mammals from the cat, dog, bear, and marten families. They have also been used to find birds and insects as well as 42 different plant species, 26 fungal species, and 6 bacterial species. These are not always endangered species. The dogs sometimes also sniff out pests such as bark beetles or invasive plants such as knotgrass and ragweed.

“In principle, you can train all dog breeds for such tasks”, says Grimm-Seyfarth. “But some of them may require more work than others”. Pinschers and Schnauzers, for example, are now more likely to be bred as companion dogs and are therefore less motivated to track down species. And terriers tend to immediately snatch their targets – which is, of course, not desirable. 

Pointers and setters, on the other hand, have been specially bred to find and point out game – but not to hunt it. This is why these breeds are often used in research and conservation projects in North America, Great Britain, and Scandinavia in order to detect ground-breeding birds such as ptarmigans and wood grouse. Retrievers and herding dogs also have qualities that make them good at tracking species. They are eager to learn, easy to motivate, enjoy working with people, and generally do not have a strong hunting instinct. That is why Labrador Retrievers, Border Collies, and German Shepherds are among the most popular detection dogs worldwide. 

Grimm-Seyfarth’s Border Collie Zammy, for example, learned as a puppy how to track down the droppings of otters. This is a valuable contribution to research because the droppings can be genetically analysed to find out which individual it comes from, how it is related to other conspecifics, and what it has eaten. However, even for experienced experts, these revealing traces are not so easy to find. Especially small and dark coloured droppings are easy to overlook. Dogs, on the other hand, sniff even the most unremarkable droppings without distinction. In an earlier UFZ study, they found four times as many droppings as human investigators alone. And the fact that Zammy is now also looking for crested newts makes his efforts even more rewarding.

According to the overview study, many other teams around the world have had similarly good experiences. In almost 90% of cases, the dogs worked much more effectively than other detection methods. Compared with camera traps, for example, they detected between 3.7 and 4.7 fold more black bears, pied martens, and bobcats. They are also often reach their destination particularly quickly. “They can find a single plant on a football field in a very short time”, says Grimm-Seyfarth. They are even able to discover underground parts of plants.

However, there are also cases where the use of detection dogs is not the method of choice. Rhinos, for example, leave their large piles of excrement clearly visible on paths so that humans can easily find them on their own. And animal species that know feral dogs as enemies are more likely to find (and fight) the detection dogs than to be found. “However, in most cases where the dogs did not perform so well, poor training is to blame”, says Grimm-Seyfarth. She believes that good training of the animal is the most important recipe for success for detection dogs. “If you select the right dog, know enough about the target species, and design the study accordingly, this can be an excellent detection method”. She and her colleagues are already planning further applications for the useful detection dogs. A new project that involves tracking down invasive plant species will soon be launched.

Publication: 
Annegret Grimm-Seyfarth, Wiebke Harms, Anne Berger: Detection dogs in nature conservation: A database on their worldwide deployment with a review on breeds used and their performance compared to other methods. Methods in Ecology and Evolution (2020), DOI: 10.1111/2041-210X.13560. https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13560

Source: Helmholtz Centre for Environmental Research (UFZ)

K9 Chemistry: A Safer Way to Train Detection Dogs

Trained dogs are incredible chemical sensors, far better at detecting explosives, narcotics and other substances than even the most advanced technological device. But one challenge is that dogs have to be trained, and training them with real hazardous substances can be inconvenient and dangerous.

NIST scientists have been working to solve this problem using a jello-like material called polydimethylsiloxane, or PDMS for short. PDMS absorbs odors and releases them slowly over time. Enclose it in a container with an explosive or narcotic for a few weeks until it absorbs the odors, and you can then use it to safely train dogs to detect the real thing. 

A detection dog in training.
Credit: Courtesy of Auburn University College of Veterinary Medicine

But a few weeks is a long time, and now, NIST researchers have developed a faster way to infuse PDMS with vapors. In the journal Forensic Chemistry, they describe warming compounds found in explosives, causing them to release vapors more quickly, then capturing those vapors with PDMS that is maintained at a cooler temperature, which allows it to absorb vapors more readily. This two-temperature method cut the time it took to “charge” PDMS training aids from a few weeks to a few days. 

“That time savings can be critical,” said NIST research chemist Bill MacCrehan. “If terrorists are using a new type of explosive, you don’t want to wait a month for the training aids to be ready.”

For this experiment, MacCrehan infused PDMS with vapors from dinitrotoluene (DNT), which is a low-level contaminant present in TNT explosives but the main odorant that dogs respond to when detecting TNT. He also infused PDMS with vapors from a small quantity of TNT. Co-authors at the Auburn University College of Veterinary Medicine then demonstrated that trained detection dogs responded to the DNT-infused PDMS training aids as if they were real TNT. 

While this study focused on DNT as a proof of concept, MacCrehan says he believes the two-temperature method will also work with other explosives and with narcotics such as fentanyl. Some forms of fentanyl are so potent that inhaling a small amount can be harmful or fatal to humans and dogs. But by controlling how much vapor the PDMS absorbs, MacCrehan says, it should be possible to create safe training aids for fentanyl.

Other safe training aids already exist. Some are prepared by dissolving explosives and applying the solution to glass beads, for example. “But most have not been widely accepted in the canine detection community because their effectiveness has not been proven,” said Paul Waggoner, a co-author and co-director of Auburn’s Canine Performance Sciences Program. “If you put an explosive in a solvent, the dogs might actually be detecting the solvent, not the explosive.”

To test the two-temperature method, MacCrehan devised a PDMS “charging station” with a hot plate on one side and a cooling plate on the other (so the “hot stays hot and the cool stays cool,” as a 1980s commercial jingle put it). He prepared various samples by placing the DNT on the hot side, where the chemical was warmed to temperatures ranging from 30 to 35 degrees Celsius (86 to 95 degrees Fahrenheit) — well below the temperature that would cause TNT to detonate. The PDMS was kept a relatively cool 20 degrees Celsius, or about room temperature, on the other side of the charging station. 

MacCrehan loaded the DNT-infused PDMS samples, which hold their charge for up to a few months, into perforated metal cans. He also loaded several cans with blanks — PDMS samples to which no vapors were added. He labeled the cans with codes and shipped them to Auburn University. 

The researchers at Auburn had trained a team of six Labrador retrievers to detect TNT using real TNT explosives. They then conducted a study to determine if the dogs would alert to the PDMS from NIST samples as if it were real TNT.

This study was “double blind”: Neither the dog handlers nor the note-takers who scored the dogs’ responses knew which containers underwent which preparation. This is important because dogs are keenly attuned to the body language of their handlers. If the handlers knew which samples were prepared with DNT, they might inadvertently cue the dogs with the direction of their gaze, a subtle shift in body position or some other subconscious gesture. And if the note-takers knew which samples were which, they might over-interpret the dogs’ responses.

The dogs alerted to all the DNT-infused PDMS samples. They did not alert to the blanks, meaning that they were responding to the DNT, not to the PDMS itself. “They responded to the samples as if they were the real thing,” Waggoner said. 

The dogs did not respond as consistently to PDMS that was infused with limited quantities of TNT. However, MacCrehan explains that the very small amounts of TNT he used for this purpose may not have contained sufficient amounts of DNT to fully infuse the samples.

Looking forward, MacCrehan will be experimenting with ways to safely prepare PDMS training aids for the improvised explosives TATP and HMTD. These compounds are extremely unstable and detonate easily, so having safe training aids for them will be especially useful.

MacCrehan is a laboratory chemist, not an animal behavior expert. But despite his technological orientation, he is amazed by dogs. He estimates that they are 10,000 to 100,000 times more sensitive than the most sophisticated analytical instruments. “We are nowhere near having a hand-held gizmo that can do what they do,” he said.  


Paper: W. MacCrehan, M. Young, M. Schantz, T.C. Angle, P. Waggoner and T. Fischer. Two-temperature preparation method and visualization of PDMS-based canine training aids for explosives. Forensic Chemistry. Published online Oct. 15, 2020. DOI: 10.1016/j.forc.2020.100290

Source: National Institute of Standards and Technology

Detection Dogs and DNA on the Trail of Endangered Lizards

Detection dogs trained to sniff out the scat of an endangered lizard in California’s San Joaquin Valley, combined with genetic species identification, could represent a new, noninvasive sampling technique for lizard conservation worldwide. That is according to a study published by the University of California, Davis, in partnership with the nonprofit Working Dogs for Conservation, U.S. Geological Survey and the U.S. Bureau of Land Management.

Scientists have used trained conservation dogs to locate scat and collect DNA samples for everything from bears and foxes to gorillas and whales. But the technique had not been used for reptiles until this study, for which scientists developed a novel approach to identify the presence of the blunt-nosed leopard lizard in the Panoche Hills Recreation Area and Carrizo Plain National Monument, both managed by BLM.

They developed new methods to recover DNA from feces and genetically identify lizard species in the same area. The study, published in the Journal of Wildlife Management, is a proof of concept for a host of reptiles.

Lizard detection dog

Seamus, a trained detection dog, alerts his handler to the presence of scat. (Mike Westphal, Bureau of Land Management)

“So many reptilian species have been hit so hard,” said lead author Mark Statham, an associate researcher with the Mammalian Ecology and Conservation Unit of the UC Davis School of Veterinary Medicine. “A large proportion of them are endangered or threatened. This is a really valuable way for people to be able to survey them.”

No direct contact needed

Current methods for surveying lizard species typically rely on live capture or visual surveys. Scat sampling allows biologists to study elusive, rare or dangerous animals without the need for direct contact. In addition to informing about the presence, habitat and genetics of an animal, scat can also be analyzed to inform researchers about diet, hormones, parasites and other health factors.

Using the new method, the authors genetically identified specific species for 78 percent of the 327 samples collected by dog-handler teams across four years. Most (82 percent) of those identified were confirmed as being from blunt-nosed leopard lizards.

To meet regulatory monitoring requirements, more research is needed to assess the viability of using detection dogs to recover usable DNA at larger scales. But the research highlights the broad potential this method holds for surveying and monitoring reptiles.

Funding was provided by the Bureau of Land Management.

Source:  UC Davis media release

What Makes A Good Working Dog? Canine ‘Aptitude Test’ Might Offer Clues

The canine labor market is diverse and expansive. Assistance dogs may be trained to work with the visually or hearing impaired, or with people in wheelchairs. Detection dogs may be trained to sniff out explosives, narcotics or bedbugs. Other pups even learn to jump out of helicopters on daring rescue missions.

Despite the wide variety of working roles available for man’s best friend, those jobs can be tough to fill, since not every dog will qualify. Even among dogs specifically bred to be assistance dogs, for example, only about 50 percent that start a training program will successfully complete it, while the rest go on to be very well-trained family pets.

As a result, the wait list for a trained assistance dog can be up to two years.

Working Dogs

Shelby Smith was matched with her assistance dog Picasso through the nonprofit Canine Companions for Independence. UA researcher Evan MacLean is looking for ways to help organizations like Canine Companions identify promising assistance dogs sooner. (Photo: Bob Demers/UANews)

Evan MacLean, director of the Arizona Canine Cognition Center at the University of Arizona, is exploring ways to identify the best dogs for different jobs – before they start the long and expensive training process — by looking at their cognitive abilities.

He is lead author of a new study in Frontiers in Veterinary Science that looks at whether canines’ cognitive abilities can help predict their success as working dogs.

While a dog’s physical characteristics and temperament are often considered when thinking about which dog will be right for a given job, cognition is an area that’s received far less attention.

“People have really focused on temperament and how reactive a dog is to certain things in the environment,” said MacLean, assistant professor in the UA School of Anthropology. “What we were interested in was the fact that these dogs also face cognitive challenges. They have to learn all these things in the course of their training, and they have to be able to flexibly solve problems when things go wrong.”

MacLean’s study focuses on two types of working dogs: assistance dogs in training, which will go on to be paired with people with disabilities, and explosive detection dogs working for the U.S. Navy.

MacLean and his colleagues looked at the performance of both types of dogs on 25 different cognitive measures by using a battery of game-based tests, like hiding and finding objects and other forms of canine play.

What they found: A different set of skills predict whether a dog will be a good detection dog or a good assistance dog.

In the case of assistance dogs, social skills — including the ability to pay close attention to and maintain eye contact with humans — appear to be especially important. In detection dogs, good short-term memory and sensitivity to human body language, such as pointing gestures, were the best predictors of success.

“Dog jobs are just about as diverse as human jobs are,” MacLean said. “People sometimes think of working dogs as this general category of dogs that have jobs in society, but they actually have to do really, really different things, and because these jobs are so diverse, we didn’t expect that there was going to be one litmus test for what would make a good dog. It’s like if you think about aptitude testing with people – there are certain questions that will tell you something about one job but not another.”

The study involved 164 dogs from the California-based organization Canine Companions for Independence, which trains assistance dogs, and 222 dogs from the Navy.

The researchers tested the assistance dogs at 18 months old, when they first started a full-time, intensive six-month training program. Dogs in the study were considered “successful” based on whether or not they ultimately graduated from the training. Through cognitive testing, MacLean and his colleagues were able to predict the top 25 percent of graduates with 86 percent accuracy.

The success of the Navy dogs, whose training is ongoing and not marked by a single graduation date, was measured based on trainers’ records of the dogs’ performance on training exercises, as well as questionnaires with people who trained or deployed with the dogs.

MacLean’s findings suggest that cognition could be considered alongside temperament and physicality to predict working dog success.

If organizations that train dogs could better predict which dogs are most worth the investment, it could save tens of thousands of dollars in unnecessary training costs and also ensure that people in need get the right dogs faster, MacLean said.

He and his colleagues are now working on determining if cognitive testing could be informative even earlier — when a dog is just 8 weeks old. They also are looking at whether these skills have a genetic basis that could be targeted in breeding programs.

“One of the most exciting parts of all this is that it tells us cognition does something in animals,” MacLean said. “We study these abstract questions about how animals think about the world and how they solve problems, but there aren’t always a lot of situations where you can say, ‘Why does that matter? What does it allow an animal to actually do?’ This is some of the first evidence that suggests that these processes that we measure, which differ between individual dogs, have some real consequences related to something that’s quite worthy in society.”

Source:  University of Arizona media release

New sniffer dog research

A team of scientists has provided the first evidence that dogs can learn to categorise odours and apply this to scents they have never encountered before.

The research reveals how the animals process odour information and is likely to have a profound impact on how we train sniffer dogs.

Sniffer dog research
Training a sniffer dog (photo courtesy of University of Lincoln)

The study, led by researchers at the University of Lincoln, UK, and funded by the Office of Naval Research and the Office of Naval Research (ONR) Global in the US,
found that dogs are able to categorise odours on the basis of their common properties. This means that dogs can behave towards new smells from a category in the same way as smells that they already know.

As humans, we do not have to experience the smell of every fish to know that it smells ‘fishy’; instead we use our previous experience of fish and categorise the new smell in the correct way. The new research, published in the journal Scientific Reports, reveals that dogs can do the same.

Researchers separated dogs into two groups and then trained them to respond to 40 different olfactory stimuli – or smells – half of which were accelerant-based. The dogs in the experimental group were trained (through a reward) to offer a behavioural response, for example “sit”, when they were presented with smells which fit a specific category, but to withhold that response for other non-category stimuli. The remaining dogs were trained on the same stimuli but were not rewarded for the categorical variable.

The researchers found that only the dogs in the category group were able to learn the task. Even more significantly, when presented with completely unknown smells, the dogs were able to place them in the correct category and to remember the odours six weeks later.

The researchers concluded that this means that dogs can apply information from previous experience to novel – or new – scents in order to apply an appropriate response.

Dr Anna Wilkinson from the School of Life Sciences at the University of Lincoln said: “As humans, we are very good at assigning different things to different categories; for example, we know something is a chair because there are identifiable aspects such as a flat space to sit on, or four legs. Categorising odours works the same way, and we were keen to discover whether dogs would be able to learn those skills.  

“This was an extremely hard task for the dogs as the odour stimuli varied in strength, so animals were never trained on exactly the same stimulus. As such, it is even more impressive that the experimental group dogs learned and retained the information.

“These findings add substantially to our understanding of how animals process olfactory information and suggest that use of this method may improve performance of working animals.”

The findings have implications in the field of working dog training as it implies that it may be possible to improve the way we train detection dogs.

Source:  University of Lincoln press release

How the opioid crisis is affecting dogs

The USA is the midst of an opioid crisis – large numbers of people are misusing and becoming addicted to opioids, which can include heroin, prescription pain medications and fentanyl (a synthetic).  The Centers for Disease Control and Prevention estimate that an average of 91 Americans die each day due to opioid overdose.

Veterinarians treating companion animals have to be aware of the symptoms of opioid overdose because, unfortunately, there are cases of accidental ingestion.  Sometimes the pet owners are unwilling to admit that their pet may have eaten opioid drugs, which of course is admission that they may be an addict themselves.

Drugs are, of course, big business and it’s up to law enforcement to help catch dealers who are making and selling the drugs.  Police dogs and detection dogs are part of that fight and they are often exposed to opioids in the course of detection work.

This video is for veterinarians and dog handlers to understand how to catch the signs of an opioid overdose in a dog and the treatment with reversal drugs like Narcan which are needed to save them.

and this is some of the news coverage about police dog handlers carrying reversal kits along with other first aid supplies.

Kathleen Crisley, specialist in dog massage, rehabilitation and nutrition/food therapy, The Balanced Dog, Christchurch, New Zealand

Bear’s best friends

Detection dog for bears

Camas, of Working Dogs for Conservation, on the job in the Centennial Mountains.  Photo credit:  Julie Larsen Maher

A recently released study from WCS (Wildlife Conservation Society) details a new method using  “detection dogs,” genetic analysis, and scientific models to assess habitat suitability for bears in an area linking the Greater Yellowstone Ecosystem (GYE) to the northern U.S. Rockies.

The method, according to the authors, offers an effective, non-invasive approach to the collection of data that could play a vital role in the further recovery of grizzly bears during the coming decades.

“The use of detection dogs allowed us to quantify and map key areas of habitat for black bears in the Centennial Mountains located along the Idaho-Montana border west of Yellowstone National Park,” said Jon Beckmann, WCS Scientist and lead author of the study. “Black bears are a proxy species useful for predicting likely grizzly bear habitat. With recovery, a larger grizzly bear population needs room to roam and to reconnect with other populations. The Centennial Mountains region of the U.S. northern Rockies can provide room and safe linkages— critical to connecting the bear population in the GYE area to others further north and west”. 

During the study, two Labrador retrievers and two German shepherds owned and trained by Working Dogs for Conservation, located 616 scat samples of black bears and 24 of grizzly bears (identified by DNA extraction and analysis) in the 2500 square kilometer (965 square mile) study area.

“Dogs excel at searching for multiple scents at once, even if one is far more common than the other,” according to Aimee Hurt, Working Dogs for Conservation co-founder. “In this case, the dogs easily alerted us to a multitude of black bear scat, while also readily locating the rare grizzly bear scat, resulting in a multitude of data points and a robust model.”

“We recognize that black bears do not always utilize the landscape in precisely the same manner as grizzly bears,” said Beckmann. “But given the paucity of grizzly bears in the study area—especially  during the years of our study—our  approach, data, and model have value to grizzly bear conservation and management. This is especially true given that black bears and grizzly bears in the GYE are known to utilize very similar habitats spatially, but at different times.” 

Plugging the scat sample location data into their scientific model, the scientists examined the landscape with respect to habitat parameters, private lands, public land management and human activity in the area. Results of modeling provided insight into bear habitat use and resource selection patterns.

Among the findings it was determined that distance to roads matters; bears use habitat that is farther from roads, and when road density increased within 4 kilometers of a location bears used that habitat less. Bears also used a habitat less if it were high elevation, or privately owned. With this information land managers, land trusts, and others will be better informed to make bear habitat management and conservation decisions. This study may also inform human-bear conflict avoidance, and so help people and bears better co-exist.

“Using Detection Dogs and RSPF Models to Assess Habitat Suitability for Bears in Greater Yellowstone,” appears in the current edition of Western North American Naturalist. Co-authors include: Jon P. Beckmann of WCS; Lisette P. Waits of the Department of Fish and Wildlife, University of Idaho; Aimee Hurt and Alice Whitelaw of Working Dogs for Conservation; and Scott Bergen of Idaho Department of Fish and Game.

WCS’s work in this region is supported by the Turner Foundation, Wilburforce Foundation, Brainerd Foundation, The New York Community Trust, and the Bureau of Land Management–Dillon, Montana office.

Source:  Wildlife Conservation Society media release

 

 

New products to help train dogs for explosive detection

The Department of Homeland Security (USA) has been conducting independent assessments and developing products to assist canine explosive teams.

An explosive detection dog in action. Photo courtesy of the Department of Homeland Security

An explosive detection dog in action. Photo courtesy of the Department of Homeland Security

One of the biggest challenges in the training and testing of canine teams results from the explosives materials themselves – especially new homemade explosives. Due to the potential safety risks of explosives, only specially trained federal explosive technicians can provide the material for training and testing. This not only limits training times and opportunities, but also increases the costs since the technicians must travel to a central location for multi-day training events.

Researchers have been developing a new training aid that matches the scent of explosive materials but poses no danger to the trainers, the canines or the environment. It is currently undergoing field testing within federal, state and local canine detection teams. A key objective was to for the canines to react to the non-hazardous, non-explosive training aid the same way they would actual explosive material.

“It doesn’t go boom if you drop it, hit it or light it on fire,” said Canine Program Manager, Don Roberts. “That allows teams to take the training from the very controlled environment we currently have to train in for safety reasons and put it in a real-world scenario – for example putting the odor in a cinderblock and seeing if the dog can find it. We can put this new training aid in car wheel wells, airports etc., without fear that they’ll explode.”

S&T’s partner, Johns Hopkins Applied Physics Lab, developed the new training aid, Roberts said. After a number of trials, they’re ready to transfer the technology to the Transportation Security Administration, the primary customer for the aid. The bigger news, according to Roberts, is that the product was also designed to fit first responders’ needs as well.

“The design price point and usability factor has been geared to the first responder community – state and local explosive detection dogs who don’t have the regular training support TSA has. They are the ones who really need these products,” said Roberts.

The training aids are made to be thrown away after being used. These aids can last for over eight hours and can be stored up to two years. The scent can be dissolved in water, as opposed to the previous explosive training materials, which required special handling, transport and had to be stored in a bunker.

Next steps for this program include developing a second scent for training the dogs, and licensing so that the products can be produced outside of the federal government.

Source:  Department of Homeland Security media release

Read my other blog posts about explosives detector dogs:

Canine remote control?

Just how far will technology take us in interacting with dogs?

Jeff Miller and David Bevly of the Department of Mechanical Engineering, at Auburn University, Auburn, Alabama, have devised a system to issue cues by remote control.  They’ve published their results in an issue of the International Journal of Modelling, Identification and Control which is due out soon.

Their system provides guidance to the dog using an embedded command module with vibration and tone generation capabilities. Tests in a structured and non-structured environment show obedience accuracy up to almost 98%.

The system is designed with serious uses in mind – it’s not being designed for the lazy dog owner who doesn’t want to spend time or interact with their dog.

The team has demonstrated that a search & rescue or other working dog can be trained to respond “virtually flawlessly” to remote control tones and vibrations as if they were immediate commands from a human handler.

A detector dog in action

A detector dog in action

Directing detection dogs in areas where human handlers cannot access is one such serious application of the technology.

Source:  EurekAlert! press release