Category Archives: research

Dogs know when they don’t know

When they don’t have enough information to make an accurate decision, dogs will search for more – similarly to chimpanzees and humans.

Researchers at the DogStudies lab at the Max Planck Institute for the Science of Human History have shown that dogs possess some “metacognitive” abilities – specifically, they are aware of when they do not have enough information to solve a problem and will actively seek more information, similarly to primates. To investigate this, the researchers created a test in which dogs had to find a reward – a toy or food – behind one of two fences. They found that the dogs looked for additional information significantly more often when they had not seen where the reward was hidden.

Metacognition study

In this study, dogs showed some of the signs of metacognition, specifically that they searched for more information when they had not seen where a reward was placed. © Juliane Bräuer

In the field of comparative psychology, researchers study animals in order to learn about the evolution of various traits and what this can tell us about ourselves. At the DogStudies lab at the Max Planck Institute for the Science of Human History, project leader Juliane Bräuer studies dogs to make these comparisons. In a recent study published in the journal Learning & Behavior, Bräuer and colleague Julia Belger, now of the Max Planck Institute for Human Cognitive and Brain Sciences, explore whether dogs have metacognitive abilities – sometimes described as the ability to “know what one knows” – and in particular whether they are aware of what information they have learned and whether they need more information.

To test this, the researchers designed an apparatus involving two V-shaped fences. A reward, either food or a toy, would be placed by one researcher behind one of the two fences while another researcher held the dog. In some cases, the dog could see where the reward was placed, while in others the dog could not. The researchers then analyzed how frequently the dogs looked through a gap in the fence before choosing an option. The question was whether, like chimps and humans, the dog would “check” through the gap when he or she had not seen where the reward was placed. This would indicate that the dog was aware that he or she did not know where the reward was – a metacognitive ability – and would try to get more information before choosing a fence.

Experiment set up

The overall set-up of the experiment, showing the two V-shaped fences, the experimenter who places the reward, the experimenter holding the dog, and the dog in starting position, without a curtain to block the view. This dog was participating in the third variation, with a time delay. © DogStudies. Belger & Bräuer, 2018. Metacognition in dogs: Do dogs know they could be wrong? Learning & Behavior. DOI: 10.3758/s13420-018-0367-5.

Some researchers argue that some animals, such as dogs, may only look for extra information when searching as a routinized, instinctual behavior, and not as a result of a metacognitive process. To control for this, Bräuer and Belger tested whether dogs show the so-called “passport effect,” originally described by researcher Joseph Call. When humans are looking for something very important, for example, a passport, they will engage in more active searching and will check for it more often than if they are looking for something less important or generic. Great apes display this same behavior – they will search more for a high-value food. Thus, Bräuer and Belger varied whether the dogs were looking for high- or low-value food, in order to test whether dogs also had the searching flexibility displayed in the passport effect. In another variation, they tested whether it made a difference to the dog when they had to search for a toy or for food.

The dogs “checked” more often when they did not know where the reward was hidden

The researchers found that the dogs did check significantly more often for the reward when they had not seen where it was placed. “These results show that dogs do tend to actively seek extra information when they have not seen where a reward is hidden,” explains Belger. “The fact that dogs checked more when they had no knowledge of the reward’s location could suggest that dogs show metacognitive abilities, as they meet one of the assumptions of knowing about knowing.”

Checking, however, did not always make the dogs very much more successful. In the first variation, with food or a toy as a reward, when dogs checked they were correct more often than when they did not check. However, in the second variation, with high-value or low-value food as the reward, even when dogs checked, they were not correct more than one would expect based on chance. The researchers theorize that this could be due to inhibition problems – the dogs get so excited about finding the reward, that they cannot stop themselves from approaching the closest fence even when they have seen that the reward is probably not there.

Additionally, the dogs did check more often for the toy than for the food in the first variation, suggesting that they do show flexibility in their searching and are not just engaging in a routine behavior. However, they did not check more often for the high-value food in the second variation, although they did look for it more quickly. Overall, the researchers concluded that the dogs, while showing some degree of searching flexibility, are not as flexible as primates.

In a third variation of the test, the dogs could always see where a food reward was placed, but were subject to a delay of 5 seconds to 2 minutes before being allowed to retrieve the reward. Interestingly, the dogs did not check more often with a longer time delay, even though they were slightly less successful. “It’s possible that this was due to a ‘ceiling effect,’ as dogs overall selected the correct fence in 93% of trials in this variation, so the pressure for seeking extra information was low,” suggests Belger.

Do dogs have metacognitive abilities?

The results did not allow the researchers to say definitively whether dogs possess metacognition, although they displayed some evidence for it. “For humans, vision is an important information gathering sense. In this case our experiment was based on a ‘checking’ action relying on sight – but the dogs probably also used their sense of smell when checking through the gap. We know that smell is very important for dogs and we could see that they were using it,” states Bräuer. “In future, we would like to develop an experiment investigating under what circumstances dogs decide to use their sense of smell versus sight. This may give us additional insights into their information seeking abilities.”

Source:   Max Planck Institute for the Science of Human History

Advertisements

No link between hypoallergenic dogs and lower risk of childhood asthma

Growing up with dogs is linked to a lower risk of asthma, especially if the dogs are female, a new study from Karolinska Institutet and Uppsala University in Sweden shows. However, the researchers found no relation between ‘allergy friendly’ breeds and a lower risk of asthma. The study is published in the journal Scientific Reports.

asthma and child

Children growing up with female dogs, but not with ‘allergy friendly’ dogs have a lower risk of asthma. Photo: iStock

Earlier studies have demonstrated a link between growing up with dogs and a lower risk of childhood asthma, but it has not been known whether this association is modified by dog characteristics. In this new study, the researchers have interrogated how variables such as sex, breed, number of dogs or size of dog are associated with the risk of asthma and allergy amongst children raised in a home with a dog during their first year of life.

“The sex of the dog can affect the amount of allergens released, and we know that uncastrated male dogs express more of a particular allergen than castrated dogs and female dogs,” says Tove Fall, Senior Lecturer at the Department of Medical Sciences – Molecular Epidemiology at Uppsala University, who led the study with Professor Catarina Almqvist Malmros at Karolinska Institutet. “Moreover, some breeds are described anecdotally as ‘hypoallergenic’ or ‘allergy friendly’ and are said to be more suitable for people with allergies, but there is no scientific evidence for this.”

Classified by different traits

The study included all children born in Sweden from 1 January 2001 to 31 December 2004 who had a dog in their home for the first year of life (23,600 individuals). Data from the Swedish population and health data registries were linked anonymously to two dog-owner registries from the Swedish Board of Agriculture and the Swedish Kennel Club. The dogs were classified by sex, breed, number, size and alleged ‘hypoallergenicity’.

The researchers then studied the relationship between the dogs’ characteristics and the risk of asthma and allergy diagnosis or the prescription of asthma or allergy drugs at the age of six. The statistical analyses controlled for all known confounders that could affect the risk of developing asthma or allergies, such as parental asthma/allergy, geographical location and number of siblings.

Their results showed that the prevalence of asthma at age six was 5.4 per cent. Children with only female dogs at home had a 16 per cent lower risk of asthma than those raised with male dogs. However, living with a male dog did not correlate with a higher risk than living with no dog at all. Children living with two or more dogs had a 21 per cent lower risk of asthma than those who only lived with one dog.

Hypoallergenic dogs linked to higher risk of allergy

Children of parents with asthma/allergies more often had breeds described as ‘hypoallergenic’ than children of parents without asthma/allergies – 11.7 per cent versus 7.6 per cent. Exposure to these breeds was associated with a 27 per cent higher risk of allergy but no increased risk of asthma.

“The likely explanation for this higher risk is that families with a history of allergy to furred pets more often choose these dogs, and also that ‘allergy friendly’ dogs do not in fact release less allergens,” says Catarina Almqvist Malmros, Professor at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet and Consultant at Astrid Lindgren Children’s Hospital.

“The finding should be treated with caution as we can say nothing about any actual causality,” she continues. “More studies are needed to monitor differences over time, measure the risk of allergies using biomarkers, and take account of the microflora.”

The study was financed with grants from the Swedish Research Council, the Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM), Agria, Forte, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas), the Swedish Heart and Lung Foundation, Stockholm County Council (ALF funding) and the Strategic Research Programme in Epidemiology (SFO-epi) at Karolinska Institutet.

Source:  Karolinska Institutet media release

What Makes A Good Working Dog? Canine ‘Aptitude Test’ Might Offer Clues

The canine labor market is diverse and expansive. Assistance dogs may be trained to work with the visually or hearing impaired, or with people in wheelchairs. Detection dogs may be trained to sniff out explosives, narcotics or bedbugs. Other pups even learn to jump out of helicopters on daring rescue missions.

Despite the wide variety of working roles available for man’s best friend, those jobs can be tough to fill, since not every dog will qualify. Even among dogs specifically bred to be assistance dogs, for example, only about 50 percent that start a training program will successfully complete it, while the rest go on to be very well-trained family pets.

As a result, the wait list for a trained assistance dog can be up to two years.

Working Dogs

Shelby Smith was matched with her assistance dog Picasso through the nonprofit Canine Companions for Independence. UA researcher Evan MacLean is looking for ways to help organizations like Canine Companions identify promising assistance dogs sooner. (Photo: Bob Demers/UANews)

Evan MacLean, director of the Arizona Canine Cognition Center at the University of Arizona, is exploring ways to identify the best dogs for different jobs – before they start the long and expensive training process — by looking at their cognitive abilities.

He is lead author of a new study in Frontiers in Veterinary Science that looks at whether canines’ cognitive abilities can help predict their success as working dogs.

While a dog’s physical characteristics and temperament are often considered when thinking about which dog will be right for a given job, cognition is an area that’s received far less attention.

“People have really focused on temperament and how reactive a dog is to certain things in the environment,” said MacLean, assistant professor in the UA School of Anthropology. “What we were interested in was the fact that these dogs also face cognitive challenges. They have to learn all these things in the course of their training, and they have to be able to flexibly solve problems when things go wrong.”

MacLean’s study focuses on two types of working dogs: assistance dogs in training, which will go on to be paired with people with disabilities, and explosive detection dogs working for the U.S. Navy.

MacLean and his colleagues looked at the performance of both types of dogs on 25 different cognitive measures by using a battery of game-based tests, like hiding and finding objects and other forms of canine play.

What they found: A different set of skills predict whether a dog will be a good detection dog or a good assistance dog.

In the case of assistance dogs, social skills — including the ability to pay close attention to and maintain eye contact with humans — appear to be especially important. In detection dogs, good short-term memory and sensitivity to human body language, such as pointing gestures, were the best predictors of success.

“Dog jobs are just about as diverse as human jobs are,” MacLean said. “People sometimes think of working dogs as this general category of dogs that have jobs in society, but they actually have to do really, really different things, and because these jobs are so diverse, we didn’t expect that there was going to be one litmus test for what would make a good dog. It’s like if you think about aptitude testing with people – there are certain questions that will tell you something about one job but not another.”

The study involved 164 dogs from the California-based organization Canine Companions for Independence, which trains assistance dogs, and 222 dogs from the Navy.

The researchers tested the assistance dogs at 18 months old, when they first started a full-time, intensive six-month training program. Dogs in the study were considered “successful” based on whether or not they ultimately graduated from the training. Through cognitive testing, MacLean and his colleagues were able to predict the top 25 percent of graduates with 86 percent accuracy.

The success of the Navy dogs, whose training is ongoing and not marked by a single graduation date, was measured based on trainers’ records of the dogs’ performance on training exercises, as well as questionnaires with people who trained or deployed with the dogs.

MacLean’s findings suggest that cognition could be considered alongside temperament and physicality to predict working dog success.

If organizations that train dogs could better predict which dogs are most worth the investment, it could save tens of thousands of dollars in unnecessary training costs and also ensure that people in need get the right dogs faster, MacLean said.

He and his colleagues are now working on determining if cognitive testing could be informative even earlier — when a dog is just 8 weeks old. They also are looking at whether these skills have a genetic basis that could be targeted in breeding programs.

“One of the most exciting parts of all this is that it tells us cognition does something in animals,” MacLean said. “We study these abstract questions about how animals think about the world and how they solve problems, but there aren’t always a lot of situations where you can say, ‘Why does that matter? What does it allow an animal to actually do?’ This is some of the first evidence that suggests that these processes that we measure, which differ between individual dogs, have some real consequences related to something that’s quite worthy in society.”

Source:  University of Arizona media release

Yes, your pet can tell time

Are you taking your time when feeding your pet? Fluffy and Fido are on to you — and they can tell when you are dawdling.

time dog

A new study from Northwestern University has found some of the clearest evidence yet that animals can judge time. By examining the brain’s medial entorhinal cortex, the researchers discovered a previously unknown set of neurons that turn on like a clock when an animal is waiting.

“Does your dog know that it took you twice as long to get its food as it took yesterday? There wasn’t a good answer for that before,” said Daniel Dombeck, who led the study. “This is one of the most convincing experiments to show that animals really do have an explicit representation of time in their brains when they are challenged to measure a time interval.”

The research was published online this week in the journal Nature Neuroscience. Dombeck is an associate professor of neurobiology in Northwestern’s Weinberg College of Arts and Sciences.

When planning the study, Dombeck’s team focused on the medial entorhinal cortex, an area located in the brain’s temporal lobe that is associated with memory and navigation. Because that part of the brain encodes spatial information in episodic memories, Dombeck hypothesized that the area could also be responsible for encoding time.

“Every memory is a bit different,” said James Heys, a postdoctoral fellow in Dombeck’s laboratory. “But there are two central features to all episodic memories: space and time. They always happen in a particular environment and are always structured in time.”

To test their hypothesis, Dombeck and Heys set up an experiment called the virtual “door stop” task. In the experiment, a mouse runs on a physical treadmill in a virtual reality environment. The mouse learns to run down a hallway to a door that is located about halfway down the track. After six seconds, the door opens, allowing the mouse to continue down the hallway to receive its reward.

After running several training sessions, researchers made the door invisible in the virtual reality scene. In the new scenario, the mouse still knew where the now-invisible “door” was located based on the floor’s changing textures. And it still waited six seconds at the “door” before abruptly racing down the track to collect its reward.

“The important point here is that the mouse doesn’t know when the door is open or closed because it’s invisible,” said Heys, the paper’s first author. “The only way he can solve this task efficiently is by using his brain’s internal sense of time.”

By using virtual reality, Dombeck and his team can neatly control potentially influencing factors, such as the sound of the door opening. “We wouldn’t be able to make the door completely invisible in a real environment,” Dombeck said. “The animal could touch it, hear it, smell it or sense it in some way. They wouldn’t have to judge time; they would just sense when the door opened. In virtual reality, we can take away all sensory cues.”

But Dombeck and his team did more than watch the mice complete the door stop task over and over again. They took the experiment one step further by imaging the mice’s brain activity. Using two-photon microscopy, which allows advanced, high-resolution imaging of the brain, Dombeck and Heys watched the mice’s neurons fire.

“As the animals run along the track and get to the invisible door, we see the cells firing that control spatial encoding,” Dombeck said. “Then, when the animal stops at the door, we see those cells turned off and a new set of cells turn on. This was a big surprise and a new discovery.”

Dombeck noted these “timing cells” did not fire during active running — only during rest. “Not only are the cells active during rest,” he said, “but they actually encode how much time the animal has been resting.”

The implication of the work expands well beyond your impatient pooch. Now that researchers have found these new time-encoding neurons, they can study how neurodegenerative diseases might affect this set of cells.

“Patients with Alzheimer’s disease notably forget when things happened in time,” Heys said. “Perhaps this is because they are losing some of the basic functions of the entorhinal cortex, which is one of the first brain regions affected by the disease.”

“So this could lead to new early-detection tests for Alzheimer’s,” Dombeck added. “We could start asking people to judge how much time has elapsed or ask them to navigate a virtual reality environment — essentially having a human do a ‘door stop’ task.”

Source:   Northwestern University media statement

A dog’s colour could impact longevity, increase health problems

New research led by the University of Sydney has revealed the life expectancy of chocolate Labradors is significantly lower than their black and yellow counterparts.
Chocolate Labrador

The study of more than 33,000 United Kingdom-based Labrador retrievers of all colours shows chocolate Labradors also have a higher incidence of ear infections and skin disease. Its findings were published in the open access journal Canine Genetics and Epidemiology.

Part of the University’s VetCompass™ Programme, which collects and analyses electronic patient data on dogs, the research is being replicated in Australia, where Labradors are the most popular breed of dog.

In the UK, the median longevity of non-chocolate Labradors is 12.1 years, more than 10 percent longer than those with chocolate coats. The prevalence of ear inflammation (otitis externa) was twice as high in chocolate Labradors, who were four times more likely to have suffered from pyo-traumatic dermatitis (also known as hot-spot).

Lead author Professor Paul McGreevy, from the University’s Faculty of Science, said the relationship between coat colour and disease came as a surprise to researchers. The UK findings may not hold in Australian Labradors, he said, but warrant investigation.

“The relationships between coat colour and disease may reflect an inadvertent consequence of breeding certain pigmentations,” he said. “Because chocolate colour is recessive in dogs, the gene for this colour must be present in both parents for their puppies to be chocolate. Breeders targeting this colour may therefore be more likely to breed only Labradors carrying the chocolate coat gene. It may be that the resulting reduced gene pool includes a higher proportion of genes conducive to ear and skin conditions.”

Across the entire Labrador population, the most common health conditions found were obesity, ear infections and joint conditions.

“We found that 8.8 percent of UK Labradors are overweight or obese, one of the highest percentages among dog breeds in the VetCompass™ database,” Professor McGreevy said.

The prevalence was higher among male dogs who had been neutered.

Source:  University of Sydney media statement

Scientists chase mystery of how dogs process words

When some dogs hear their owners say “squirrel,” they perk up, become agitated. They may even run to a window and look out of it. But what does the word mean to the dog? Does it mean, “Pay attention, something is happening?” Or does the dog actually picture a small, bushy-tailed rodent in its mind?

scanner_eddie

Eddie, one of the dogs that participated in the study, poses in the fMRI scanner with two of the toys used in the experiments, “Monkey” and “Piggy.” (Photo courtesy Gregory Berns)

Frontiers in Neuroscience published one of the first studies using brain imaging to probe how our canine companions process words they have been taught to associate with objects, conducted by scientists at Emory University. The results suggest that dogs have at least a rudimentary neural representation of meaning for words they have been taught, differentiating words they have heard before from those they have not.

“Many dog owners think that their dogs know what some words mean, but there really isn’t much scientific evidence to support that,” says Ashley Prichard, a PhD candidate in Emory’s Department of Psychology and first author of the study. “We wanted to get data from the dogs themselves — not just owner reports.”

“We know that dogs have the capacity to process at least some aspects of human language since they can learn to follow verbal commands,” adds Emory neuroscientist Gregory Berns, senior author of the study. “Previous research, however, suggests dogs may rely on many other cues to follow a verbal command, such as gaze, gestures and even emotional expressions from their owners.”

The Emory researchers focused on questions surrounding the brain mechanisms dogs use to differentiate between words, or even what constitutes a word to a dog.

Berns is founder of the Dog Project, which is researching evolutionary questions surrounding man’s best, and oldest friend. The project was the first to train dogs to voluntarily enter a functional magnetic resonance imaging (fMRI) scanner and remain motionless during scanning, without restraint or sedation. Studies by the Dog Project have furthered understanding of dogs’ neural response to expected reward, identified specialized areas in the dog brain for processing faces, demonstrated olfactory responses to human and dog odors, and linked prefrontal function to inhibitory control.

For the current study, 12 dogs of varying breeds were trained for months by their owners to retrieve two different objects, based on the objects’ names. Each dog’s pair of objects consisted of one with a soft texture, such as a stuffed animal, and another of a different texture, such as rubber, to facilitate discrimination. Training consisted of instructing the dogs to fetch one of the objects and then rewarding them with food or praise. Training was considered complete when a dog showed that it could discriminate between the two objects by consistently fetching the one requested by the owner when presented with both of the objects.

During one experiment, the trained dog lay in the fMRI scanner while the dog’s owner stood directly in front of the dog at the opening of the machine and said the names of the dog’s toys at set intervals, then showed the dog the corresponding toys.

Eddie, a golden retriever-Labrador mix, for instance, heard his owner say the words “Piggy” or “Monkey,” then his owner held up the matching toy. As a control, the owner then spoke gibberish words, such as “bobbu” and “bodmick,” then held up novel objects like a hat or a doll.

The results showed greater activation in auditory regions of the brain to the novel pseudowords relative to the trained words.

“We expected to see that dogs neurally discriminate between words that they know and words that they don’t,” Prichard says. “What’s surprising is that the result is opposite to that of research on humans — people typically show greater neural activation for known words than novel words.”

The researchers hypothesize that the dogs may show greater neural activation to a novel word because they sense their owners want them to understand what they are saying, and they are trying to do so. “Dogs ultimately want to please their owners, and perhaps also receive praise or food,” Berns says.

Half of the dogs in the experiment showed the increased activation for the novel words in their parietotemporal cortex, an area of the brain that the researchers believe may be analogous to the angular gyrus in humans, where lexical differences are processed.

The other half of the dogs, however, showed heightened activity to novel words in other brain regions, including the other parts of the left temporal cortex and amygdala, caudate nucleus, and the thalamus.

These differences may be related to a limitation of the study — the varying range in breeds and sizes of the dogs, as well as possible variations in their cognitive abilities. A major challenge in mapping the cognitive processes of the canine brain, the researchers acknowledge, is the variety of shapes and sizes of dogs’ brains across breeds.

“Dogs may have varying capacity and motivation for learning and understanding human words,” Berns says, “but they appear to have a neural representation for the meaning of words they have been taught, beyond just a low-level Pavlovian response.”

This conclusion does not mean that spoken words are the most effective way for an owner to communicate with a dog. In fact, other research also led by Prichard and Berns and recently published in Scientific Reports, showed that the neural reward system of dogs is more attuned to visual and to scent cues than to verbal ones.

“When people want to teach their dog a trick, they often use a verbal command because that’s what we humans prefer,” Prichard says. “From the dog’s perspective, however, a visual command might be more effective, helping the dog learn the trick faster.”

Source:  Emory University

Dog intelligence ‘not exceptional’

Note from DoggyMom:

This research hit mainstream media at the beginning of the month.  It’s an important part of the research process to have results peer reviewed and it is also common for reviews of this nature – across multiple pieces of research.

I don’t necessarily think that dogs must be exceptional, however.  And so the results of cognition research that have been published so far shouldn’t be discounted because of this review.  Rather, the cognition research undertaken with dogs helps to prove that they are sentient (very important for animal welfare laws) and more intelligent than many people (and policy makers) believe.

I certainly don’t expect my dogs to be Einstein, but I do see that they have intelligence and emotions – both of which we should respect.


Scientists reviewed evidence that compared the brain power of dogs with other domestic animals, other social hunters and other carnivorous (an order including animals such as dogs, wolves, bears, lions and hyenas).Dog intelligence photo

The researchers, from the University of Exeter and Canterbury Christ Church University, found the cognitive abilities of dogs were at least matched by several species in each of these groups.

The study examined more than 300 papers on the intelligence of dogs and other animals, and found several cases of “over interpretation” in favour of dogs’ abilities.

“During our work it seemed to us that many studies in dog cognition research set out to ‘prove’ how clever dogs are,” said Professor Stephen Lea, of the University of Exeter.

“They are often compared to chimpanzees and whenever dogs ‘win’, this gets added to their reputation as something exceptional.

“Yet in each and every case we found other valid comparison species that do at least as well as dogs do in those tasks.”

The review focussed on sensory cognition, physical cognition, spatial cognition, social cognition and self-awareness.

“Taking all three groups (domestic animals, social hunters and carnivorans) into account, dog cognition does not look exceptional,” said Dr Britta Osthaus, of Canterbury Christ Church University.

“We are doing dogs no favour by expecting too much of them. Dogs are dogs, and we need to take their needs and true abilities into account when considering how we treat them.”

The paper, published in the journal Learning & Behavior, is entitled: “In what sense are dogs special? Canine cognition in comparative context.”

Source:  University of Exeter media release